原文:tf.data API,让你轻松处理数据 - 2019.01.23

出处:TensorFlow - 微信公众号

借助 tf.data API,可以根据简单的可重用片段构建复杂的输入管道(Pipline). 例如,图片模型的管道可能会汇聚分布式文件系统中的文件中的数据、对每个图片应用随机扰动,并将随机选择的图片合并成用于训练的批次. 文本模型的管道可能包括从原始文本数据中提取符号、根据对照表将其转换为嵌入标识符,以及将不同长度的序列组合成批次数据. 使用 tf.data API 可以轻松处理大量数据、不同的数据格式以及复杂的转换.

tf.data API 在 TensorFlow 中引入了两个新的抽象类:

[1] - tf.data.Dataset 表示一系列元素,其中每个元素包含一个或多个 Tensor 对象.

例如,在图像管道中,元素可能是单个训练样本,具有一对表示图像数据和标签的张量.

可以通过两种不同的方式来创建数据集

• 创建来源(例如 Dataset.from_tensor_slices()),以通过一个或多个 tf.Tensor 对象构建数据集

• 应用转换(例如 Dataset.batch()),以通过一个或多个 tf.data.Dataset 对象构建数据集

[2] - tf.data.Iterator 提供了从数据集中提取元素的主要方法.

Iterator.get_next()返回的操作会在执行时生成 Dataset 的下一个元素,并且此操作通常充当输入管道代码和模型之间的接口.

最简单的迭代器是 “单次迭代器”,它与特定的 Dataset 相关联,并对其进行一次迭代. 要实现更复杂的用途,可以通过 Iterator.initializer 操作使用不同的数据集重新初始化和参数化迭代器,这样一来,就可以在同一个程序中对训练和验证数据进行多次迭代(举例而言).

1. 基本机制

本指南的这一部分介绍了创建不同种类的 DatasetIterator 对象的基础知识,以及如何从这些对象中提取数据.

要启动输入管道,必须定义来源. 例如,要通过内存中的某些张量构建 Dataset,可以使用tf.data.Dataset.from_tensors()tf.data.Dataset.from_tensor_slices(). 或者,如果输入数据以推荐的 TFRecord 格式存储在磁盘上,那么可以构建 tf.data.TFRecordDataset.

一旦有了 Dataset 对象,可以将其转换为新的 Dataset,方法是链接 tf.data.Dataset 对象上的方法调用. 例如,可以应用单元素转换,例如 Dataset.map()(为每个元素应用一个函数),也可以应用多元素转换(例如 Dataset.batch()). 要了解转换的完整列表,请参阅 tf.data.Dataset 的文档.

消耗 Dataset 中值的最常见方法是构建迭代器对象. 通过此对象,可以一次访问数据集中的一个元素(例如通过调用 Dataset.make_one_shot_iterator()). tf.data.Iterator 提供了两个操作:Iterator.initializer,可以通过此操作(重新)初始化迭代器的状态;以及 Iterator.get_next(),此操作返回对应于有符号下一个元素的 tf.Tensor 对象. 根据使用场景,可以选择不同类型的迭代器,下文介绍了具体选项.

1.1. 数据集结构

一个数据集包含多个元素,每个元素的结构都相同. 一个元素包含一个或多个 tf.Tensor 对象,这些对象称为组件. 每个组件都有一个 tf.DType,表示张量中元素的类型;以及一个 tf.TensorShape,表示每个元素(可能部分指定)的静态形状. 可以通过 Dataset.output_typesDataset.output_shapes 属性检查数据集元素各个组件的推理类型和形状. 这些属性的嵌套结构映射到元素的结构,此元素可以是单个张量、张量元组,也可以是张量的嵌套元组. 例如:

dataset1 = tf.data.Dataset.from_tensor_slices(tf.random_uniform([4, 10]))
print(dataset1.output_types)  # ==> "tf.float32"
print(dataset1.output_shapes)  # ==> "(10,)"

dataset2 = tf.data.Dataset.from_tensor_slices(
   (tf.random_uniform([4]),
    tf.random_uniform([4, 100], maxval=100, dtype=tf.int32)))
print(dataset2.output_types)  # ==> "(tf.float32, tf.int32)"
print(dataset2.output_shapes)  # ==> "((), (100,))"

dataset3 = tf.data.Dataset.zip((dataset1, dataset2))
print(dataset3.output_types)  # ==> (tf.float32, (tf.float32, tf.int32))
print(dataset3.output_shapes)  # ==> "(10, ((), (100,)))"

为元素的每个组件命名通常会带来便利性,例如,如果它们表示训练样本的不同特征.

除了元组之外,还可以使用 collections.namedtuple 或将字符串映射到张量的字典来表示 Dataset 的单个元素.

dataset = tf.data.Dataset.from_tensor_slices(
   {"a": tf.random_uniform([4]),
    "b": tf.random_uniform([4, 100], maxval=100, dtype=tf.int32)})
print(dataset.output_types)  # ==> "{'a': tf.float32, 'b': tf.int32}"
print(dataset.output_shapes)  # ==> "{'a': (), 'b': (100,)}"

Dataset 转换支持任何结构的数据集. 在使用 Dataset.map()Dataset.flat_map()Dataset.filter() 转换时(这些转换会对每个元素应用一个函数),元素结构决定了函数的参数:

dataset1 = dataset1.map(lambda x: ...)
dataset2 = dataset2.flat_map(lambda x, y: ...)
# Note: Argument destructuring is not available in Python 3.
dataset3 = dataset3.filter(lambda x, (y, z): ...)

1.2. 创建迭代器

构建了表示输入数据的 Dataset 后,下一步就是创建 Iterator 来访问该数据集中的元素. tf.data API 目前支持下列迭代器,复杂程度逐渐增大:

  • 单次
  • 可初始化
  • 可重新初始化
  • 可馈送

单次迭代器是最简单的迭代器形式,仅支持对数据集进行一次迭代,不需要显式初始化. 单次迭代器可以处理基于队列的现有输入管道支持的几乎所有情况,但它们不支持参数化. 以 Dataset.range() 为例:

dataset = tf.data.Dataset.range(100)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()

for i in range(100):
  value = sess.run(next_element)
  assert i == value

注意:目前,单次迭代器是唯一易于与 Estimator 搭配使用的类型.

需要先运行显式 iterator.initializer 操作,然后才能使用可初始化迭代器. 虽然有些不便,但它允许使用一个或多个 tf.placeholder() 张量(可在初始化迭代器时馈送)参数化数据集的定义. 继续以 Dataset.range() 为例:

max_value = tf.placeholder(tf.int64, shape=[])
dataset = tf.data.Dataset.range(max_value)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()

# Initialize an iterator over a dataset with 10 elements.
sess.run(iterator.initializer, feed_dict={max_value: 10})
for i in range(10):
  value = sess.run(next_element)
  assert i == value

# Initialize the same iterator over a dataset with 100 elements.
sess.run(iterator.initializer, feed_dict={max_value: 100})
for i in range(100):
  value = sess.run(next_element)
  assert i == value

可重新初始化迭代器可以通过多个不同的 Dataset 对象进行初始化. 例如,可能有一个训练输入管道,它会对输入图片进行随机扰动来改善泛化;还有一个验证输入管道,它会评估对未修改数据的预测. 这些管道通常会使用不同的 Dataset 对象,这些对象具有相同的结构(即每个组件具有相同类型和兼容形状).

# Define training and validation datasets with the same structure.
training_dataset = tf.data.Dataset.range(100).map(
    lambda x: x + tf.random_uniform([], -10, 10, tf.int64))
validation_dataset = tf.data.Dataset.range(50)

# A reinitializable iterator is defined by its structure. We could use the
# `output_types` and `output_shapes` properties of either `training_dataset`
# or `validation_dataset` here, because they are compatible.
iterator = tf.data.Iterator.from_structure(training_dataset.output_types,
                                           training_dataset.output_shapes)
next_element = iterator.get_next()

training_init_op = iterator.make_initializer(training_dataset)
validation_init_op = iterator.make_initializer(validation_dataset)

# Run 20 epochs in which the training dataset is traversed, followed by the
# validation dataset.
for _ in range(20):
  # Initialize an iterator over the training dataset.
  sess.run(training_init_op)
  for _ in range(100):
    sess.run(next_element)

  # Initialize an iterator over the validation dataset.
  sess.run(validation_init_op)
  for _ in range(50):
    sess.run(next_element)

可馈送迭代器可以与 tf.placeholder 一起使用,以选择所使用的 Iterator(在每次调用 tf.Session.run 时)(通过熟悉的 feed_dict 机制). 它提供的功能与可重新初始化迭代器的相同,但在迭代器之间切换时不需要从数据集的开头初始化迭代器. 例如,以上面的同一训练和验证数据集为例,可以使用 tf.data.Iterator.from_string_handle 定义一个可在两个数据集之间切换的可馈送迭代器:

# Define training and validation datasets with the same structure.
training_dataset = tf.data.Dataset.range(100).map(
    lambda x: x + tf.random_uniform([], -10, 10, tf.int64)).repeat()
validation_dataset = tf.data.Dataset.range(50)

# A feedable iterator is defined by a handle placeholder and its structure. We
# could use the `output_types` and `output_shapes` properties of either
# `training_dataset` or `validation_dataset` here, because they have
# identical structure.
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
    handle, training_dataset.output_types, training_dataset.output_shapes)
next_element = iterator.get_next()

# You can use feedable iterators with a variety of different kinds of iterator
# (such as one-shot and initializable iterators).
training_iterator = training_dataset.make_one_shot_iterator()
validation_iterator = validation_dataset.make_initializable_iterator()

# The `Iterator.string_handle()` method returns a tensor that can be evaluated
# and used to feed the `handle` placeholder.
training_handle = sess.run(training_iterator.string_handle())
validation_handle = sess.run(validation_iterator.string_handle())

# Loop forever, alternating between training and validation.
while True:
  # Run 200 steps using the training dataset. Note that the training dataset is
  # infinite, and we resume from where we left off in the previous `while` loop
  # iteration.
  for _ in range(200):
    sess.run(next_element, feed_dict={handle: training_handle})

  # Run one pass over the validation dataset.
  sess.run(validation_iterator.initializer)
  for _ in range(50):
    sess.run(next_element, feed_dict={handle: validation_handle})

1.3. 消耗迭代器中的值

Iterator.get_next() 方法返回一个或多个 tf.Tensor 对象,这些对象对应于迭代器有符号的下一个元素. 每次评估这些张量时,它们都会获取底层数据集中下一个元素的值. (请注意,与 TensorFlow 中的其他有状态对象一样,调用 Iterator.get_next() 并不会立即使迭代器进入下个状态. 必须在 TensorFlow 表达式中使用此函数返回的 tf.Tensor 对象,并将该表达式的结果传递到 tf.Session.run(),以获取下一个元素并使迭代器进入下个状态. )

如果迭代器到达数据集的末尾,则执行Iterator.get_next() 操作会产生 tf.errors.OutOfRangeError. 在此之后,迭代器将处于不可用状态;如果需要继续使用,则必须对其重新初始化.

dataset = tf.data.Dataset.range(5)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()

# Typically `result` will be the output of a model, or an optimizer's
# training operation.
result = tf.add(next_element, next_element)

sess.run(iterator.initializer)
print(sess.run(result))  # ==> "0"
print(sess.run(result))  # ==> "2"
print(sess.run(result))  # ==> "4"
print(sess.run(result))  # ==> "6"
print(sess.run(result))  # ==> "8"
try:
  sess.run(result)
except tf.errors.OutOfRangeError:
  print("End of dataset")  # ==> "End of dataset"

一种常见模式是将 “训练循环” 封装在 try-except 块中:

sess.run(iterator.initializer)
while True:
  try:
    sess.run(result)
  except tf.errors.OutOfRangeError:
    break

如果数据集的每个元素都具有嵌套结构,则 Iterator.get_next() 的返回值将是一个或多个 tf.Tensor 对象,这些对象具有相同的嵌套结构:

dataset1 = tf.data.Dataset.from_tensor_slices(tf.random_uniform([4, 10]))
dataset2 = tf.data.Dataset.from_tensor_slices((tf.random_uniform([4]), 
                                               tf.random_uniform([4, 100])))
dataset3 = tf.data.Dataset.zip((dataset1, dataset2))

iterator = dataset3.make_initializable_iterator()

sess.run(iterator.initializer)
next1, (next2, next3) = iterator.get_next()

请注意,next1、next2 和 next3 是由同一个操作 / 节点(通过 Iterator.get_next() 创建)生成的张量. 因此,评估其中任何一个张量都会使所有组件的迭代器进入下个状态. 典型的迭代器消耗方会在一个表达式中包含所有组件.

1.4. 保存迭代器状态

tf.contrib.data.make_saveable_from_iterator 函数通过迭代器创建一个 SaveableObject,该对象可用于保存和恢复迭代器(实际上是整个输入管道)的当前状态. 以这种方式创建的可保存对象可以添加到tf.train.Saver 变量列表或 tf.GraphKeys.SAVEABLE_OBJECTS 集合中,以便采用与 tf.Variable 相同的方式进行保存和恢复. 请参阅保存和恢复,详细了解如何保存和恢复变量.

# Create saveable object from iterator.
saveable = tf.contrib.data.make_saveable_from_iterator(iterator)

# Save the iterator state by adding it to the saveable objects collection.
tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, saveable)
saver = tf.train.Saver()

with tf.Session() as sess:
  if should_checkpoint:
    saver.save(path_to_checkpoint)

# Restore the iterator state.
with tf.Session() as sess:
  saver.restore(sess, path_to_checkpoint)

2. 读取输入数据

2.1. 消耗 NumPy 数组

如果所有输入数据都适合存储在内存中,则根据输入数据创建 Dataset 的最简单方法是将它们转换为 tf.Tensor 对象,并使用 Dataset.from_tensor_slices().

# Load the training data into two NumPy arrays, for example using `np.load()`.
with np.load("/var/data/training_data.npy") as data:
  features = data["features"]
  labels = data["labels"]

# Assume that each row of `features` corresponds to the same row as `labels`.
assert features.shape[0] == labels.shape[0]
dataset = tf.data.Dataset.from_tensor_slices((features, labels))

请注意,上面的代码段会将 features 和 labels 数组作为 tf.constant() 指令嵌入在 TensorFlow 图中. 这样非常适合小型数据集,但会浪费内存,因为会多次复制数组的内容,并可能会达到 tf.GraphDef 协议缓冲区的 2GB 上限.

作为替代方案,可以根据 tf.placeholder() 张量定义 Dataset,并在对数据集初始化 Iterator 时馈送 NumPy 数组.

# Load the training data into two NumPy arrays, for example using `np.load()`.
with np.load("/var/data/training_data.npy") as data:
  features = data["features"]
  labels = data["labels"]

# Assume that each row of `features` corresponds to the same row as `labels`.
assert features.shape[0] == labels.shape[0]

features_placeholder = tf.placeholder(features.dtype, features.shape)
labels_placeholder = tf.placeholder(labels.dtype, labels.shape)

dataset = tf.data.Dataset.from_tensor_slices(
    (features_placeholder, labels_placeholder))
# [Other transformations on `dataset`...]
dataset = ...
iterator = dataset.make_initializable_iterator()

sess.run(iterator.initializer, 
         feed_dict={features_placeholder: features,
                                          labels_placeholder: labels})

2.2. 消耗 TFRecord 数据

tf.data API 支持多种文件格式,因此可以处理那些不适合存储在内存中的大型数据集. 例如,TFRecord 文件格式是一种面向记录的简单二进制格式,很多 TensorFlow 应用采用此格式来训练数据.

通过 tf.data.TFRecordDataset 类,可以将一个或多个 TFRecord 文件的内容作为输入管道的一部分进行流式传输.

# Creates a dataset that reads all of the examples from two files.
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames)

TFRecordDataset 初始化程序的 filenames 参数可以是字符串、字符串列表,也可以是字符串 tf.Tensor. 因此,如果有两组分别用于训练和验证的文件,则可以使用 tf.placeholder(tf.string) 来表示文件名,并使用适当的文件名初始化迭代器:

dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(...)  # Parse the record into tensors.
dataset = dataset.repeat()  # Repeat the input indefinitely.
dataset = dataset.batch(32)
iterator = dataset.make_initializable_iterator()

# You can feed the initializer with the appropriate filenames for the current
# phase of execution, e.g. training vs. validation.

# Initialize `iterator` with training data.
training_filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
sess.run(iterator.initializer, feed_dict={filenames: training_filenames})

# Initialize `iterator` with validation data.
validation_filenames = ["/var/data/validation1.tfrecord", ...]
sess.run(iterator.initializer, feed_dict={filenames: validation_filenames})

2.3. 消耗文本数据

很多数据集都是作为一个或多个文本文件分布的. tf.data.TextLineDataset 提供了一种从一个或多个文本文件中提取行的简单方法.

给定一个或多个文件名,TextLineDataset 会为这些文件的每行生成一个字符串值元素. 像 TFRecordDataset 一样,TextLineDataset将接受 filenames(作为 tf.Tensor),因此可以通过传递 tf.placeholder(tf.string) 进行参数化.

filenames = ["/var/data/file1.txt", "/var/data/file2.txt"]
dataset = tf.data.TextLineDataset(filenames)

默认情况下,TextLineDataset 会生成每个文件的每一行,这可能是不可取的(例如,如果文件以标题行开头或包含注释). 可以使用 Dataset.skip() 和 Dataset.filter() 转换来移除这些行. 为了将这些转换分别应用于每个文件,我们使用 Dataset.flat_map() 为每个文件创建一个嵌套的 Dataset.

filenames = ["/var/data/file1.txt", "/var/data/file2.txt"]
dataset = tf.data.Dataset.from_tensor_slices(filenames)

# Use `Dataset.flat_map()` to transform each file as a separate nested dataset,
# and then concatenate their contents sequentially into a single "flat" dataset.
# * Skip the first line (header row).
# * Filter out lines beginning with "#" (comments).
dataset = dataset.flat_map(
    lambda filename: (
        tf.data.TextLineDataset(filename)
        .skip(1)
        .filter(lambda line: tf.not_equal(tf.substr(line, 0, 1), "#"))))

2.4. 消耗 CSV 数据

CSV 文件格式是用于以纯文本格式存储表格数据的常用格式.

tf.contrib.data.CsvDataset 类提供了一种从符合 RFC 4180 的一个或多个 CSV 文件中提取记录的方法. 给定一个或多个文件名以及默认值列表后,CsvDataset 将生成一个元素元组,元素类型对应于为每个 CSV 记录提供的默认元素类型.

像 TFRecordDataset 和 TextLineDataset 一样,CsvDataset 将接受 filenames(作为 tf.Tensor),因此可以通过传递 tf.placeholder(tf.string) 进行参数化.

# Creates a dataset that reads all of the records from two CSV files, each with
# eight float columns
filenames = ["/var/data/file1.csv", "/var/data/file2.csv"]
record_defaults = [tf.float32] * 8   # Eight required float columns
dataset = tf.contrib.data.CsvDataset(filenames, record_defaults)

如果某些列为空,则可以提供默认值而不是类型.

# Creates a dataset that reads all of the records from two CSV files, each with
# four float columns which may have missing values
record_defaults = [[0.0]] * 8
dataset = tf.contrib.data.CsvDataset(filenames, record_defaults)

默认情况下,CsvDataset 生成文件的每一列或每一行,这可能是不可取的;例如,如果文件以应忽略的标题行开头,或如果输入中不需要某些列. 可以分别使用 header 和 select_cols 参数移除这些行和字段.

# Creates a dataset that reads all of the records from two CSV files with
# headers, extracting float data from columns 2 and 4.
record_defaults = [[0.0]] * 2  # Only provide defaults for the selected columns
dataset = tf.contrib.data.CsvDataset(filenames, record_defaults, header=True, select_cols=[2,4])

3. 使用 Dataset.map() 预处理数据

Dataset.map(f) 转换通过将指定函数 f 应用于输入数据集的每个元素来生成新数据集. 此转换基于 map() 函数(通常应用于函数式编程语言中的列表和其他结构). 函数 f 会接受表示输入中单个元素的 tf.Tensor 对象,并返回表示新数据集中单个元素的 tf.Tensor 对象. 此函数的实现使用标准的 TensorFlow 指令将一个元素转换为另一个元素.

本部分介绍了如何使用 Dataset.map() 的常见示例.

3.1. 解析 tf.Example 协议缓冲区消息

许多输入管道都从 TFRecord 格式的文件中提取 tf.train.Example 协议缓冲区消息(例如这种文件使用 tf.python_io.TFRecordWriter 编写而成).

每个 tf.train.Example 记录都包含一个或多个 “特征”,输入管道通常会将这些特征转换为张量.

# Transforms a scalar string `example_proto` into a pair of a scalar string and
# a scalar integer, representing an image and its label, respectively.
def _parse_function(example_proto):
  features = {"image": tf.FixedLenFeature((), tf.string, default_value=""),
              "label": tf.FixedLenFeature((), tf.int64, default_value=0)}
  parsed_features = tf.parse_single_example(example_proto, features)
  return parsed_features["image"], parsed_features["label"]

# Creates a dataset that reads all of the examples from two files, and extracts
# the image and label features.
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(_parse_function)

3.2. 解码图片数据并调整其大小

在用真实的图片数据训练神经网络时,通常需要将不同大小的图片转换为通用大小,这样就可以将它们批处理为具有固定大小的数据.

# Reads an image from a file, decodes it into a dense tensor, and resizes it
# to a fixed shape.
def _parse_function(filename, label):
  image_string = tf.read_file(filename)
  image_decoded = tf.image.decode_jpeg(image_string)
  image_resized = tf.image.resize_images(image_decoded, [28, 28])
  return image_resized, label

# A vector of filenames.
filenames = tf.constant(["/var/data/image1.jpg", "/var/data/image2.jpg", ...])

# `labels[i]` is the label for the image in `filenames[i].
labels = tf.constant([0, 37, ...])

dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(_parse_function)

3.3. 使用 tf.py_func() 应用任意 Python 逻辑

为了确保性能,建议尽可能使用 TensorFlow 指令预处理数据. 不过,在解析输入数据时,调用外部 Python 库有时很有用.

为此,请在 Dataset.map() 转换中调用 tf.py_func() 指令.

import cv2

# Use a custom OpenCV function to read the image, instead of the standard
# TensorFlow `tf.read_file()` operation.
def _read_py_function(filename, label):
  image_decoded = cv2.imread(filename.decode(), cv2.IMREAD_GRAYSCALE)
  return image_decoded, label

# Use standard TensorFlow operations to resize the image to a fixed shape.
def _resize_function(image_decoded, label):
  image_decoded.set_shape([None, None, None])
  image_resized = tf.image.resize_images(image_decoded, [28, 28])
  return image_resized, label

filenames = ["/var/data/image1.jpg", "/var/data/image2.jpg", ...]
labels = [0, 37, 29, 1, ...]

dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(
    lambda filename, label: tuple(tf.py_func(
        _read_py_function, [filename, label], [tf.uint8, label.dtype])))
dataset = dataset.map(_resize_function)

4. 批处理数据集元素

4.1. 简单的批处理

最简单的批处理形式是将数据集中的 n 个连续元素堆叠为一个元素. Dataset.batch() 转换正是这么做的,它与 tf.stack() 运算符具有相同的限制(被应用于元素的每个组件):即对于每个组件 i,所有元素的张量形状都必须完全相同.

inc_dataset = tf.data.Dataset.range(100)
dec_dataset = tf.data.Dataset.range(0, -100, -1)
dataset = tf.data.Dataset.zip((inc_dataset, dec_dataset))
batched_dataset = dataset.batch(4)

iterator = batched_dataset.make_one_shot_iterator()
next_element = iterator.get_next()

print(sess.run(next_element))  # ==> ([0, 1, 2,   3],   [ 0, -1,  -2,  -3])
print(sess.run(next_element))  # ==> ([4, 5, 6,   7],   [-4, -5,  -6,  -7])
print(sess.run(next_element))  # ==> ([8, 9, 10, 11],   [-8, -9, -10, -11])

4.2. 使用填充批处理张量

上述方法适用于具有相同大小的张量. 不过,很多模型(例如序列模型)处理的输入数据可能具有不同的大小(例如序列的长度不同). 为了解决这种情况,可以通过 Dataset.padded_batch() 转换来指定一个或多个会被填充的维度,从而批处理不同形状的张量.

dataset = tf.data.Dataset.range(100)
dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], x))
dataset = dataset.padded_batch(4, padded_shapes=[None])

iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()

print(sess.run(next_element))  # ==> [[0, 0, 0], [1, 0, 0], [2, 2, 0], [3, 3, 3]]
print(sess.run(next_element))  # ==> [[4, 4, 4, 4, 0, 0, 0],
                               #      [5, 5, 5, 5, 5, 0, 0],
                               #      [6, 6, 6, 6, 6, 6, 0],
                               #      [7, 7, 7, 7, 7, 7, 7]]

可以通过 Dataset.padded_batch() 转换为每个组件的每个维度设置不同的填充,并且可以采用可变长度(在上面的示例中用 None 表示)或恒定长度. 也可以替换填充值,默认设置为 0.

5. 训练工作流程

5.1. 处理多个周期

tf.data API 提供了两种主要方式来处理同一数据的多个周期.

要迭代数据集多个周期,最简单的方法是使用 Dataset.repeat() 转换. 例如,要创建一个将其输入重复 10 个周期的数据集:

filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(...)
dataset = dataset.repeat(10)
dataset = dataset.batch(32)

应用不带参数的 Dataset.repeat() 转换将无限次地重复输入. Dataset.repeat() 转换将其参数连接起来,而不会在一个周期结束和下一个周期开始时发出信号.

如果想在每个周期结束时收到信号,则可以编写在数据集结束时捕获 tf.errors.OutOfRangeError 的训练循环. 此时,可以收集关于该周期的一些统计信息(例如验证错误).

filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(...)
dataset = dataset.batch(32)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()

# Compute for 100 epochs.
for _ in range(100):
  sess.run(iterator.initializer)
  while True:
    try:
      sess.run(next_element)
    except tf.errors.OutOfRangeError:
      break

  # [Perform end-of-epoch calculations here.]

5.2. 随机重排输入数据

Dataset.shuffle() 转换会使用类似于 tf.RandomShuffleQueue 的算法随机重排输入数据集:它会维持一个固定大小的缓冲区,并从该缓冲区统一地随机选择下一个元素.

filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(...)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32)
dataset = dataset.repeat()

5.3. 使用高阶 API

tf.train.MonitoredTrainingSession API 简化了在分布式设置下运行 TensorFlow 的很多方面. MonitoredTrainingSession 使用 tf.errors.OutOfRangeError 表示训练已完成,因此要将其与 tf.data API 结合使用,建议使用 Dataset.make_one_shot_iterator(). 例如:

filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(...)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32)
dataset = dataset.repeat(num_epochs)
iterator = dataset.make_one_shot_iterator()

next_example, next_label = iterator.get_next()
loss = model_function(next_example, next_label)

training_op = tf.train.AdagradOptimizer(...).minimize(loss)

with tf.train.MonitoredTrainingSession(...) as sess:
  while not sess.should_stop():
    sess.run(training_op)

要在 input_fn 中使用 Dataset(input_fn 属于 tf.estimator.Estimator),只需返回 Dataset 即可,框架将负责创建和初始化迭代器. 例如:

def dataset_input_fn():
  filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
  dataset = tf.data.TFRecordDataset(filenames)

  # Use `tf.parse_single_example()` to extract data from a `tf.Example`
  # protocol buffer, and perform any additional per-record preprocessing.
  def parser(record):
    keys_to_features = {
        "image_data": tf.FixedLenFeature((), tf.string, default_value=""),
        "date_time": tf.FixedLenFeature((), tf.int64, default_value=""),
        "label": tf.FixedLenFeature((), tf.int64,
                                    default_value=tf.zeros([], dtype=tf.int64)),
    }
    parsed = tf.parse_single_example(record, keys_to_features)

    # Perform additional preprocessing on the parsed data.
    image = tf.image.decode_jpeg(parsed["image_data"])
    image = tf.reshape(image, [299, 299, 1])
    label = tf.cast(parsed["label"], tf.int32)

    return {"image_data": image, "date_time": parsed["date_time"]}, label

  # Use `Dataset.map()` to build a pair of a feature dictionary and a label
  # tensor for each example.
  dataset = dataset.map(parser)
  dataset = dataset.shuffle(buffer_size=10000)
  dataset = dataset.batch(32)
  dataset = dataset.repeat(num_epochs)

  # Each element of `dataset` is tuple containing a dictionary of features
  # (in which each value is a batch of values for that feature), and a batch of
  # labels.
  return dataset
Last modification:January 30th, 2019 at 02:54 pm