AIHGF

Python库 - torchsummary 打印 Pytorch 模型
torchsummary 库实现类似于 Keras 的 model.summary() 的功能,以便于打印 PyT...
扫描右侧二维码阅读全文
03
2018/09

Python库 - torchsummary 打印 Pytorch 模型

torchsummary 库实现类似于 Keras 的 model.summary() 的功能,以便于打印 PyTorch 模型信息.

Github - pytorch-summary

  • 安装
pip install torchsummary
#或
git clone https://github.com/sksq96/pytorch-summary
  • 使用方法
from torchsummary import summary
summary(pytorch_model, input_size=(channels, H, W))

其中, input_size 是必须设定的,以对网络进行一次 forward.</p>

使用例示

CNN for MNSIT

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torchsummary import summary

    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(320, 50)
            self.fc2 = nn.Linear(50, 10)

        def forward(self, x):
            x = F.relu(F.max_pool2d(self.conv1(x), 2))
            x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
            x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)
            return F.log_softmax(x, dim=1)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
    model = Net().to(device)

    summary(model, (1, 28, 28))

输出结果:

    ----------------------------------------------------------------
            Layer (type)               Output Shape         Param #
    ================================================================
                Conv2d-1           [-1, 10, 24, 24]             260
                Conv2d-2             [-1, 20, 8, 8]           5,020
             Dropout2d-3             [-1, 20, 8, 8]               0
                Linear-4                   [-1, 50]          16,050
                Linear-5                   [-1, 10]             510
    ================================================================
    Total params: 21,840
    Trainable params: 21,840
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.00
    Forward/backward pass size (MB): 0.06
    Params size (MB): 0.08
    Estimated Total Size (MB): 0.15
    ----------------------------------------------------------------

VGG16

import torch
from torchvision import models
from torchsummary import summary

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vgg = models.vgg16().to(device)

summary(vgg, (3, 224, 224))

输出结果:

    ----------------------------------------------------------------
            Layer (type)               Output Shape         Param #
    ================================================================
                Conv2d-1         [-1, 64, 224, 224]           1,792
                  ReLU-2         [-1, 64, 224, 224]               0
                Conv2d-3         [-1, 64, 224, 224]          36,928
                  ReLU-4         [-1, 64, 224, 224]               0
             MaxPool2d-5         [-1, 64, 112, 112]               0
                Conv2d-6        [-1, 128, 112, 112]          73,856
                  ReLU-7        [-1, 128, 112, 112]               0
                Conv2d-8        [-1, 128, 112, 112]         147,584
                  ReLU-9        [-1, 128, 112, 112]               0
            MaxPool2d-10          [-1, 128, 56, 56]               0
               Conv2d-11          [-1, 256, 56, 56]         295,168
                 ReLU-12          [-1, 256, 56, 56]               0
               Conv2d-13          [-1, 256, 56, 56]         590,080
                 ReLU-14          [-1, 256, 56, 56]               0
               Conv2d-15          [-1, 256, 56, 56]         590,080
                 ReLU-16          [-1, 256, 56, 56]               0
            MaxPool2d-17          [-1, 256, 28, 28]               0
               Conv2d-18          [-1, 512, 28, 28]       1,180,160
                 ReLU-19          [-1, 512, 28, 28]               0
               Conv2d-20          [-1, 512, 28, 28]       2,359,808
                 ReLU-21          [-1, 512, 28, 28]               0
               Conv2d-22          [-1, 512, 28, 28]       2,359,808
                 ReLU-23          [-1, 512, 28, 28]               0
            MaxPool2d-24          [-1, 512, 14, 14]               0
               Conv2d-25          [-1, 512, 14, 14]       2,359,808
                 ReLU-26          [-1, 512, 14, 14]               0
               Conv2d-27          [-1, 512, 14, 14]       2,359,808
                 ReLU-28          [-1, 512, 14, 14]               0
               Conv2d-29          [-1, 512, 14, 14]       2,359,808
                 ReLU-30          [-1, 512, 14, 14]               0
            MaxPool2d-31            [-1, 512, 7, 7]               0
               Linear-32                 [-1, 4096]     102,764,544
                 ReLU-33                 [-1, 4096]               0
              Dropout-34                 [-1, 4096]               0
               Linear-35                 [-1, 4096]      16,781,312
                 ReLU-36                 [-1, 4096]               0
              Dropout-37                 [-1, 4096]               0
               Linear-38                 [-1, 1000]       4,097,000
    ================================================================
    Total params: 138,357,544
    Trainable params: 138,357,544
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.57
    Forward/backward pass size (MB): 218.59
    Params size (MB): 527.79
    Estimated Total Size (MB): 746.96
    ---------------------------------------
Last modification:October 9th, 2018 at 04:47 pm

Leave a Comment